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In groundwater contamination scenarios associated with petroleum products, residual non-aqueous phase 
liquids (NAPLs) create a long-term source of contamination.  In spite of sophisticated models proposed to 
quantify the mass transfer between NAPLs and aqueous phase in a laboratory setting, little attention has 
been paid to the spatial distribution of residual NAPL in a field-scale.  In this paper, a two-step 
geostatistical approach is proposed to characterize the distribution of residual NAPL contamination in a 
3D space.  As the first step, multiple secondary data sources are combined and used in generating multiple 
3D geostatistical realizations of presence/absence of contamination.  In the second step, the generated 
realizations are ‘clipped’ by 2D realizations of areal extent obtained from a distance function-based 
approach.  A cross-validation exercise is then implemented to show the value of secondary data in 
improving the prediction ability of the proposed methodology and its overall performance. 

Introduction 

Many groundwater contamination incidents begin with the release of essentially immiscible fluids into the 
subsurface environment. The immiscible fluids, termed LNAPLs (Light Non-Aqueous Phase Liquids), are 
typically produced, stored and distributed as gasoline, diesel, heavy fuel and lubricating oils. The 
characteristics of these products in conjunction with their geologic and hydrogeologic conditions at a 
contaminated site are the primary factors that influence the movement and distribution of mobile and 
residual LNAPL in the subsurface.  

When oil (LNAPL) is accidentally released, it migrates vertically and laterally under the gravity and 
capillary forces. When the volume of the release is sufficient, the LNAPL will migrate through the 
unsaturated zone to the capillary fringe and the water table (figure 1).  Due to capillary forces, some 
LNAPL is always retained in the soil pores as ‘residual’ or ‘immobile’ NAPL. In fact, LNAPL coexists 
with water (and air) in the soil pores. LNAPL saturations are always less than 100 percent but may range 
from as little as 5 percent to over 70 percent (figure 2). As the remaining ‘mobile’ LNAPL continues to 
migrate through the subsurface, the volume of mobile product decreases as NAPL becomes trapped as 
isolated droplets within the soil pore network. Thus, LNAPL plumes are ‘spatially self-limiting’, unless 
continually supplied from an ongoing release (API 2004). While migrating through the subsurface, LNAPL 
is affected by the heterogeneous nature of the soil strata: slight differences in soil texture may promote 
preferential pathways within the aquifer horizontally and vertically. Also, LNAPL is significantly 
influenced by vertical fluctuations in the water table. These fluctuations enhance the development of the 
residual LNAPL. The residual NAPL is almost impossible to be removed and creates a long-term source of 
pollution as it partitions slowly into the aqueous and vapor phases. 

Despite numerous studies conducted to quantify the mass transfer (geochemical partitioning) between 
NAPLs and aqueous phase, characterization of spatial distribution of ‘residual LNAPL’ has gone unnoticed 
for a large part. Spatial distribution of ‘residual NAPL’ is particularly important as an input for contaminant 
fate and transport models. A literature survey in the area of fate and transport modeling for contaminants 
associated with petroleum products indicates that almost always ‘over-simplifying’ assumptions have been 
adopted (Waddill and Widdowson, 1997).  

In this paper, a two-stage geostatistical approach is proposed to delineate the space of uncertainty 
associated with distribution of residual NAPL in a contaminated aquifer. The proposed methodology is 
presented in the form of a case study for a hydrocarbon impacted site located at west-central Alberta.  
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As the first step, data from multiple data sources such as soil texture and groundwater surface elevation are 
combined with the assumptions of full data independence and conditional independence (permanence of 
ratios). This gives a 3D map for conditional distribution of presence/absence of contamination conditioned 
to soil texture and groundwater surface elevation. In a sequential indicator simulation (SIS) context, this 
conditional distribution is then combined with prior probability map to build a 3-dimentional updated 
posterior probability map. In this work, indicator hard data as well as soil texture data are originated from 
Ultra-Violet Induced Cone Penetration Testing (CPT-UVIF) and groundwater elevation data are obtained 
from 23 piezometers installed at the contaminated site. 

Primary Hard Data: Truncated UVIF Readings 

CPT-UVIF has been frequently used in environmental site characterization. Commercially available CPT-
UVIF is a standard CPT cone coupled with the UVIF module to detect zones impacted by aromatic 
hydrocarbons. It records the mechanical responses of the soil at the same scale as it records the UVIF 
responses. The UVIF responses can be only reliably used as a screening tool to identify contamination by 
LNAPLs. In other words, UVIF response has a complex relationship with LNAPL concentration and can 
easily be incorporated into geostatistical modeling. In this work, instead, a categorical variable (T-UVIF) is 
introduced to represent the presence or absence of contamination based on the UVIF responses:  
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Figure 3 shows the location map for T-UVIF data. The global proportions for presence and absence of 
contamination are 0.733 and 0.267, respectively.  

Secondary Soft Data: Soil Texture 

One of the most common aquifer conditions influencing LNAPL movement is soil heterogeneities. 
Differences in soil properties will produce preferential flow. In particular, mobile LNAPL will tend to 
migrate in more permeable and porous soils. Thus, the distribution of the LNAPL (mobile and residual) 
will generally correspond to the distribution of the permeable units; and a relationship between the soil 
texture and presence of residual NAPL is expected. In this study, data from cone penetration testing (CPT) 
has been used to model the geological structure at the site. CPT continuously records the mechanical 
responses of in-situ soil in a high resolution fashion. It also records the presence or absence of aromatic 
hydrocarbons (LNAPLs) at the same scale as mechanical parameters (isotopic sampling). Following the 
methodology introduced by Zhang and Tumay (2003), Soil Classification Index (SCI) can be calculated at 
every data location. SCI is considered to be well-correlated with effective porosity. Figure (4-a) shows the 
histogram for SCI data. The presence/absence of contamination was calibrated against SCI data and a 
calibration table was established (figure 4-b, table 1). Table 1 depicts a positive correlation between 
probability of presence of contamination and SCI, which is in turn related to effective porosity. 

Table 1: calibration of presence/absence of contamination against Soil Classification Index  
  ( )SCIykp 1=  ( )SCIykp 0=  

SCI –class 
( )SCIy  

[-2.14,-1.01) 0.093 0.907 
[-1.01,-0.8) 0.1515 0.8485 
[-0.8,-0.56) 0.2 0.8 
[-0.56,-0.39) 0.2424 0.7576 
[-0.39,-0.29) 0.2353 0.7647 
[-0.29,-0.16) 0.3243 0.6757 
[-0.16,0.04) 0.2632 0.7368 
[0.04,0.31) 0.3429 0.6571 
[0.31,1.11) 0.3902 0.6098 
[1.11,1.77) 0.4211 0.5789 
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In order to generate the 3D map of conditional probabilities ( ( )SCIykp ), 100 realizations of SCI field were 
simulated by Sequential Gaussian Simulation (Deutsch and Journel 1997) on a 120×160 ×  56 grid. The 
equal-sized cell dimensions were 0.5m× 0.5m× 0.25m. Appropriate conditional probabilities ( ( )SCIykp ) 
were assigned to each cell in every realization and then averaged over all realizations.   

Secondary Soft Data: Location Relative to Groundwater Table 

The vertical movement of the groundwater table affects the volume of mobile and residual LNAPL. Given 
mobile LNAPL on the water table, a rise in the water table causes the hydrocarbon to migrate upward as 
water displaces LNAPL from the pore space. As water fills the pore network, LNAPL becomes trapped as 
droplets of LNAPL (condition of low saturation in figure 2). Because LNAPL droplets are isolated, they 
remain trapped as distinct islands of LNAPL with the saturated pore network. The droplets remain 
suspended in the network until the water table elevation drops. Lowering of the water table enables the oil 
drain from the pore network. During drainage, droplets of oil remain within the pore interfaces leaving 
residual oil within the unsaturated zone. The resultant vertical movement of the water table produces a 
residual ‘smear zone’ within the saturated and unsaturated zones (figure 5). In order to account for the 
effects of groundwater table fluctuations, an additional parameter, normalized elevation, is introduced as 
the elevation UVIF data point relative to groundwater table elevation at the same location:  

  Znormal = ZUVIF – ZGW  (2) 

where, Znormal  is the normalized elevation at every data point, ZUVIF is the elevation of the data point in the 
global coordinate system, and ZGW is the elevation of groundwater table at the data location in global 
coordinate system.  The presence/absence of contamination was calibrated against Znormal data and 
conditional probabilities were calculated. Figure 6 shows the global probabilities of contamination for 
different classes of normalized elevation. Calibration of absence/presence of contamination has been 
summarized in table 2.   

Table 2: calibration of presence/absence of contamination against normalized elevation 
  ( )GWykp 1=  ( )GWykp 0=  

Znormal – class 
( )GWy  

[-4.3m,-0.576 m) 0.212 0.788 
[-0.576 m , 0.387m) 0.294 0.706 
[0.387m ,0.987m ) 0.326 0.674 
[0.987m ,1.63m) 0.461 0.539 
[1.63m ,2.19m) 0.384 0.616 
[2.19m ,2.77m) 0.326 0.674 
[2.77m ,3.47m) 0.333 0.667 
[3.47m ,4.14m) 0.083 0.917 
[4.14m ,4.93m) 0.151 0.849 
[4.93m ,6.68m) 0.029 0.971 

Integration of Secondary Data Sources: Assumption of Full Data Independence 

Bayes’ law permits the calculation of the conditional probability ( )GWSCI yykp , : 

 ( ) ( )
( )GWSCI

GWSCI
GWSCI yyp

yykpyykp
,
,,, =  (3) 

with:  

( ) ( ) ( ) ( )SCIGWSCIGWSCI ykypkypkpyykp ,,, ××=  

The easiest way to combine the single event probabilities is to assume independence of the two data events. 
This is, however, a strong assumption and should be taken with care. The assumption of data independence 
states that ySCI and yGW are independent ( ) ( ) ( )GWSCIGWSCI ypypyyp ×=, . An additional assumption is 
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required to simplify equation 3, which is conditional independence of events ySCI and yGW given event k = 0 
or 1, that is:  

( ) ( )kypykyp SCIGWSCI =,  

( ) ( )kypykyp GWSCIGW =,  

These assumptions result in:  

 ( ) ( ) ( )
( )kp

ykpykp
yykp GWSCI

GWSCI

×
=,  (4) 

Assumption of full data independence is not robust against departures from the assumption of independence 
(Ortiz 2003). As a first attempt, in this work, the conditional probabilities have been combined with the 
hypothesis of conditional independence. Figure 7 –a shows the conditional probability of k = 1 given data 
events ySCI and yGW.  

Integration of Secondary Data Sources: Assumption of Conditional Independence 

A more robust approach is to assume the data are conditionally independent given the primary data event (k 
= 0 or 1). The expression for conditional probability of the primary data event k given the secondary data 
events ySCI and yGW is: 
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in which, the joint probability ( )GWSCI yyp ,  is needed. According to Journel (2002) Bayesian analysis goes 
around this problem by considering ratios of updated probabilities of the type. This results in the expression 
for the permanence of ratios assumption: 
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where, the event k~ represents the complement of the primary data event k. Expression 6 results in the 
expression for the conditional probability based on the assumption of permanence of ratios (conditional 
independence):  
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Figure 7 –b illustrates the conditional probability of k = 1 given data events ySCI and yGW, based on the 
assumption of conditional independence. According to figure 7, the differences in the conditional 
probabilities obtained based on the assumptions of full data independence and conditional independence are 
minor.    

Integration of Prior Probability Map with the Conditional Probabilities 

The next step is combining the conditional probabilities obtained in the previous steps with the prior 
probability map (conditioned to indicator hard data only). This was achieved by performing Sequential 
Indicator Simulation (SIS). There are a number of techniques used to constrain SIS to soft secondary data. 
In this work, two different techniques are used and their results are compared: (1) SIS with a Locally Vary 
Mean (LVM) and (2) Bayesian Updating (BU).  
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The conditional probabilities can be incorporated as the locally varying means for kriging. Therefore, the 
expression for probability of presence or absence of contamination can be written by (Deutsch 2006):   

 ( ) ( ) ( )GWSCI
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where, ( )kiLVM ;* u , k = 0, 1 are the estimated local probabilities of presence/absence of contamination to be 
used for simulation, n is the number of local data, αλ , α = 1, …, n are the weights, ( )ki ;αu  are the local 
indicator data, and ( )GWSCI yykp ,  is the conditional probability obtained previously. Figure 8 (a) and (b) 
show the planar view of two 3D realizations obtained by LVM approach.    

Bayesian updating is one of the simplest forms of indicator cokriging: at each location along the random 
path, indicator kriging is used to estimate the probability of presence/absence of contamination conditioned 
to local hard data alone ( ( )kiSK ;* u ). Then, Bayesian updating modifies or updates the probabilities as 
follows:  

 ( ) ( ) ( )
C
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where, ( )kiBU ;* u , k = 0, 1 are the estimated local probabilities of presence/absence of contamination, kp , k = 
0, 1 is the global probability of absence/presence of contamination, and C is the normalization constant to 
ensure that the sum of the final probabilities  is 1.0 (Deutsch 2002). Figure 8 (c) and (d) show the planar 
view of two 3D realizations obtained by BU approach. 

Clipping the Geostatistical Realizations 

The second major step in the proposed methodology is: following a ‘cookie-cutter’ approach, the 3D 
geostatistical realizations obtained by SIS are clipped by the 2D realizations of areal extent obtained from 
Distance Function-based approach. The details of the Distance Function-based approach in quantifying the 
uncertainty in areal limits can be found in Hosseini and Deutsch (2007). Figure 8 shows the 3D realizations 
of presence/absence of contamination after being clipped. 

Cross-validation of Geostatistical Model  

Cross-validation methods are adapted to categorical variables to check the probabilistic prediction of the 
geostatistical techniques applied in this work. A cross-validation study with and without conditional 
probabilities from the secondary data illustrates the value of the adopted secondary data. There are two 
ways of implementing cross-validation in presence of limited well data: (1) removing each sample and all 
other samples from the same well; or (2) removing each sample only, while keeping all other samples from 
the same well (Deutsch 1999). The first option is pessimistic, especially in presence of only a few wells. 
The second option is overly optimistic. In this work, the first approach is implemented (1) to  provide a 
‘lower-bound’ on the likely ‘goodness’ of the prediction, and (2) to evaluate the added value of having 
secondary information.    

According to Deutsch (1999), a quantitative measure of ‘closeness’ to true categories (presence or absence 
of contamination) can be summarized by:    

 ( ){ } 1,2 ,   true;   kkkpECk === αu  (10) 

which may be interpreted as the average predicted probability of the true categories. The closeness 
measures can be easily interpreted relative to the global proportions. With no primary or secondary data the 
closeness measures will equal the global proportions. Thus, the measure of ‘percent improvement’ over the 
no-data case can be expressed by:   

 1,2 ,   k
p

pCC
k

kkrel
k =

−
=  (11) 

The third measure of ‘goodness’ that is considered in this work is the measure of ‘accuracy’. As we deal 
with a binary case (contaminated or clean), at every cross-validation location four cases can be considered 
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in terms of prediction of the true categories: (1) the location is truly contaminated and this contamination is 
correctly predicted; (2) the location is contaminated, but it is wrongly predicted to be clean; (3) the location 
is uncontaminated and is correctly predicted as clean; and (4) the location is clean, but it is wrongly 
predicted to be contaminated. Cases (1) and (3) are plausible and cases (2) and (4) are not. A measure of 
‘accuracy’ of predictions can be defined as:  
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where, N is the number of wells removed and replaced in the cross-validation exercise, 11
ip , 10

ip , 00
ip  and 

01
ip  are proportions corresponding to the cases 1 to 4, respectively; and 1p  and 0p are global proportions of 

categories 1 (contaminated) and 0 (clean). M is the global measure of plausibility. Its upper bound is 1.0, in 
the ideal case of correct prediction at all cross-validation locations. Its lower bound is RM , which 
corresponds to no-data case. Cross-validation results have been summarized in tables 3 to 6.  

Table 3: measure of closeness and percentage improvement over the global probabilities, considering the 
secondary data only (no primary data used) 

 
Table 3 shows some improvements in the predictions, using secondary data only. It can be observed that 
considering secondary data (particularly groundwater elevation data) considerably improves the prediction 
of contaminated locations, even before incorporating the hard data.   
 
Table 4: measure of closeness, accounting for indicator hard data and secondary data from different data 
sources.  

 
 

 K = 0 K = 1 

 Global proportion = 0.733 Global proportion = 0.267 

 Closeness % improvement  Closeness % improvement  

SCI 0.7368 0.52 0.2828 5.92 

GW 0.7568 3.25 0.3256 21.94 

Full DI 0.7574 3.33 0.3422 28.17 

PR 0.7589 3.54 0.3441 28.88 

Closeness measures 
K = 0 K = 1 

IK LVM BU IK LVM BU 

no secondary data 0.7532 - - 0.2801 - - 

SCI - 0.7553 0.6570 - 0.2985 0.3989 

GW - 0.7345 0.6793 - 0.3388 0.6633 

DI - 0.7639 0.6917 - 0.3875 0.6834 

PR - 0.7638 0.6933 - 0.3898 0.6878 
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Table 5: percentage improvement over global proportions, accounting for indicator hard data and 
secondary data from different data sources.  

Percent 
improvement  K = 0 K = 1 

relative to global 
probability IK LVM BU IK LVM BU 

no secondary data 2.76 - - 4.86 - - 

SCI - 3.04 -10.35 - 11.81 49.40 

GW - 0.21 -7.32 - 26.90 148.45 

DI - 4.22 -5.36 - 45.16 155.98 

PR - 4.20 -5.42 - 45.99 157.60 
 

Table 6: Relative measure of accuracy, accounting for indicator hard data and secondary data from different 
sources. 

Accuracy (%) IK LVM BU 

no secondary data 4.62 - - 

SCI - 6.28 -5.28 

GW - 5.14 16.94 

DI - 13.97 20.63 

PR - 14.01 21.23 

 

Tables 4, 5 and 6 show the cross-validation results, while the indicator hard data (T-UVIF data) and 
secondary soft information (SCI data, groundwater elevation data and their combination with full data 
independence and permanence of ratios assumptions) are used. The results of indicator kriging (IK) with no 
secondary information show slight improvement in predictions over the global proportions. In all cases, 
inclusion of secondary data improves the predictive ability. Nevertheless, as it was expected (figure 7), 
results of the analysis with the assumptions of full data independence and permanence of ratios are very 
close. Bayesian updating (BU) technique does significantly better than IK and locally vary mean (LVM) 
technique in prediction of contaminated locations. However, it somewhat over-estimates the presence of 
contamination and its results tend to be ‘conservative’. LVM also improves the predictive ability for 
prediction of both contaminated and uncontaminated locations.  

Conclusions  

Numerous studies have dealt with partitioning of residual LNAPL into groundwater. However, 
quantification of areal and lateral extent of residual LNAPL has gone unnoticed for a large part. In this 
paper, a two-step geostatistical approach is introduced to model three-dimensional distribution of residual 
LNAPL, accounting for secondary sources of information such as soil texture and groundwater elevation. 
The proposed methodology was evaluated by cross-validation and value of the secondary data and their 
combination in improving the predictive ability was assessed. Assumptions of full data independence and 
permanence of ratios for integration of secondary information resulted in very similar outcomes. Indicator 
kriging with locally vary mean and Bayesian updating techniques were used to combine the prior 
probability map with conditional probabilities obtained from secondary data. LVM approach resulted in 
some improvement in predictive ability of both contaminated and uncontaminated locations. Bayesian 
updating showed significant improvement over the global proportions for contaminated locations. But, it 
underestimated the clean areas.  
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Figure 1: A schematic representation of LNAPL release in the subsurface 

 

 
Figure 2: Representation of LNAPL saturations in the pore space of saturated zone 
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Figure 3: Location map for T-UVIF data. Solid circles represent wells where contamination was detected.  
No contamination was detected in wells illustrated by hollow circles.  

 
Figure 4: (a) The histogram for SCI data, (b) cumulative histogram of SCI data with 10 classes defined by 
decile thresholds; there is the same number of data in each threshold.   

 

 
Figure 5: Schematic illustration of LNAPL smear zone created by water table fluctuations. 

 

(b) (a) 
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Figure 6: Global proportions of contamination for different classes of normalized elevation. The classes 
are defined by decile thresholds; there is the same number of data in each threshold.  

 
Figure 7: A slice (NXY = 30) from 3D conditional probability map for p(k=1|ySCI,yGW), (a) based on full 
data independence, and (b) based on conditional independence (permanence of ratios).  

 (a)    (b) 

(c) (d) 
Figure 8: Views of 3D geostatistical realizations of presence/absence of contamination after being clipped. 
Realizations (a) and (b) are obtained by the LVM technique and realizations (c) and (d) are obtained by the 
BU technique.  The same random number seed was used.  

(a) (b) 


